Experimental Section

The solvents are reagent grade and used without purification. The indium metal powder (100 mesh) and all other commercial reagents were purchased from Aldrich and used as received. All palladium catalyst cross-coupling reaction were done under argon atmosphere and the reaction progress were monitored using one of the following techniques: ¹⁹F NMR, TLC and GC-MS. Analytical TLC was performed using Macherey-Nagel Polygram Sil G/UV₂₅₄ precoated plastic plates and visualized using phosphomolybdic acid (5% in methanol). Flash chromatography (eluent: hexane/ethyl acetate) was performed using silica gel 230-400 mesh, 40-63µm (Lagand Chemicals). IR spectra were recorded on a Bruker Vector –22 FT-IR spectrophotometer. ¹H, ¹⁹F and ¹³C NMR spectra were recorded in CDCl₃ at 300, 282 and 75 MHz, respectively. ¹⁹F NMR spectra were referenced against external CFCl₃ and were broadband decoupled from hydrogen nuclei. Elemental analyses were performed by Atlantic Microlab, Inc., Norcross, GA.

Synthesis of difluoroallenyl alcohol 2a: To a vigorously stirred suspension of 1 (12.44g, 40mmol) in 100mL H₂O/THF(80/20, v/v) was added indium powder(5.00g, 1.1eq) and the resulting mixture was stirred at room temperature for 2h. ¹⁹F showed the disappearance of the starting material. Then formadehyde (37% wt solution in water, 9.26g, 5eq) was added. The mixture was sonicated at room temperature for 24hs. And worked up by adding brine and extracting with diethyl ether, dried over MgSO₄ and concentrated to yield a pale yellow oil. Further purification by flash chromatography afforded **2a** (6.19g, 59%) as a colorless oil.

Typical procedure for synthesis of 1,1-Difluoro-3-(triisopropylsilyl)-4-bromo-1,2-butadiene 2b: To a solution of 2a (0.262g, 1mmol) and MsCl (0.126g, 1.1mmol) in 2mL CH₂Cl₂ at ice-water bath was added Et₃N (0.202g, 2mmol). The resulting mixture was stirred at this temperature for about 5hs. ¹⁹F NMR showed the disappearance of the starting material. Standard work-up gave a red crude product which was used without purification in the next step. To the solution of the mesylate obtained from the previous step in acetone was added lithium bromide (0.086g, 1mmol) at room temperature. The resulting mixture was stirred for about 5hs. ¹⁹F NMR showed the disappearance of the starting material. Standard work-up gave a red crude product which was purified by flash chromatography to give 2b (0.303g, yield 93% for two steps) as a colorless oil. ¹H NMR (CDCl₃, 300MHz) δ 4.2 (t, ⁴ J_{HF} = 5.2Hz, 2H), 1.22 (m, 3H), 1.08 (s, 18H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -107.36 (s, 1F) ppm; MS m/z (relative intensity) 115 (98.1), 157 (100), 281 (5.2, M⁺-43), 283 (4.9, M⁺-Isopropyl+2). Anal. Calcd for C13H23BrF₂Si: C, 48.00; H, 7.13. Found: C, 47.92; H, 6.97.

1,1-Difluoro-2-bromo-3-(triisopropylsilyl)-1,3-butadiene (3, R' = Br): ¹H NMR (CDCl₃, 300MHz) δ 6.09(m, 1H), 5.74 (m,1H), 1.24 (m, 3H), 1.12 (m, 18H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -84.60 (d, ² J_{FF} = 39.8Hz, 1F), -87.41 (d, ² J_{FF} = 39.5Hz, 1F) ppm; MS m/z (relative intensity) 128 (100), 130 (99.7), 281 (1.3, M⁺-43), 283 (1.3, M⁺-Isopropyl+2). Anal. Calcd for C₁₃H₂₃BrF₂Si: C, 48.00; H, 7.13. Found: C, 8.03; H, 6.99.

Typical procedure for Palladium catalyst cross-coupling of TIPS-α-bromo difluoroallene with aryl halides: To a solution of α-bromo difluoroallene (0.326g, 1mmol) in 3mL DMF was added Zinc powder (71mg, 1.1mmol). The resulting mixture was stirred for about 2h at 60°C. ¹⁹F NMR showed the disappearance of the starting material. To this solution was added Pd(PPh₃)₄ (25mg, 2mmol%) and phenyl iodide (0.224g, 1.1mmol). The resulting mixture was stirred for another 3h at 60°C. Standard work-up gave a yellow crude product which was purified by flash chromatography.

1,1-difluoro-2-Phenyl-3-(triisopropylsilyl)-1,3-butadiene (3a): ¹ H NMR (CDCl₃, 300MHz) δ 7.32 (m, 5H), 6.05 (d, ${}^2J_{HH}$ = 3.0Hz, 1H), 5.85 (d, ${}^2J_{HH}$ = 2.8Hz, 1H), 0.97 (s, 21H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -88.50 (d, ${}^2J_{FF}$ = 39.0Hz, 1F), -93.47 (d, ${}^2J_{FF}$ = 39.5Hz, 1F) ppm; ¹³C NMR (CDCl₃, 75Hz) δ 152.04 (dd, ${}^1J_{CF}$ = 286.3, ${}^1J_{CF}$ = 286.2Hz), 140.23, 134.77 (t, ${}^4J_{CF}$ = 2.9Hz), 133.06 (t, ${}^3J_{CF}$ = 4.2Hz), 128.92 (t, ${}^3J_{CF}$ = 3.3Hz), 128.08, 127.35, 99.11 (dd, ${}^2J_{CF}$ = 22.0, ${}^2J_{CF}$ = 21.2Hz), 18.40, 7.36; MS m/z (relative intensity) 77 (96.3), 127 (100), 279 (6.1, M⁺-43). Anal. Calcd for C₁₉H₂₈F₂Si: C, 70.76; H, 8.75. Found: C, 70.95; H, 8.84.

1,1-difluoro-2-(4'-aminophenyl)-3-(triisopropylsilyl)-1,3-butadiene (3b): 1 H NMR (CDCl $_{3}$, 300 MHz) δ 7.09 (m, 2H), 6.62 (m, 2H), 5.99 (d, $^{2}J_{HH}$ = 1.3Hz, 1H), 5.79 (d, $^{2}J_{HH}$ = 2.8Hz, 1H), 0.97 (s, 21H) ppm; 19 F NMR (CDCl $_{3}$, 282MHz) δ -90.35 (d, $^{2}J_{FF}$ = 43.4Hz, 1F), -94.96 (d, $^{2}J_{FF}$ = 46.5Hz, 1F) ppm; 13 C NMR (CDCl $_{3}$, 75Hz) δ 152.06 (dd, $^{1}J_{CF}$ = 285.1, $^{1}J_{CF}$ = 285.2Hz), 145.79, 140.67, 134.30 (t, $^{4}J_{CF}$ = 3.0Hz), 130.09 (t, $^{3}J_{CF}$ = 3.4Hz), 123.13 (t, $^{3}J_{CF}$ = 3.4Hz), 114.91, 98.99 (dd, $^{2}J_{CF}$ = 21.4, $^{2}J_{CF}$ = 21.4Hz), 18.65,

11.53; MS m/z (relative intensity) 77 (91.0), 142 (100), 337 (3.4, M^+). Anal. Calcd for $C_{19}H_{29}F_2NSi$: C, 67.61; H, 8.66. Found: C, 67.98; H, 8.83.

1,1-difluoro-2-(4'-acetyl)-3-(triisopropylsilyl)-1,3-butadiene (3c): ¹H NMR (CDCl₃, 300MHz) δ 7.92 (m, 2H), 7.44 (m, 2H), 6.09 (d, ${}^2J_{HH}$ = 2.7Hz, 1H), 5.91 (d, ${}^2J_{HH}$ = 2.7Hz, 1H), 2.62 (s, 3H), 0.97 (s, 21H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -85.61 (d, ${}^2J_{FF}$ = 34.4Hz, 1F), -90.90 (d, ${}^2J_{FF}$ = 34.7Hz, 1F) ppm; ¹³C NMR (CDCl₃, 75Hz) δ 197.63, 152.24 (dd, ${}^1J_{CF}$ = 287.7, ${}^1J_{CF}$ = 287.7Hz), 139.71, 138.19(t, ${}^3J_{CF}$ = 4.3Hz), 135.70 (t, ${}^3J_{CF}$ = 3.8Hz), 130.87, 128.90 (t, ${}^4J_{CF}$ = 3.5Hz), 128.14, 98.72 (dd, ${}^2J_{CF}$ = 22.6, ${}^2J_{CF}$ = 12.1Hz), 26.61, 18.65, 11.53; MS m/z (relative intensity) 169 (100), 321(90.5, M⁺-43), 364 (5.0, M⁺). Anal. Calcd for C₂₁H₃₀F₂OSi: C, 69.19; H, 8.29. Found: C, 69.29; H, 8.39.

1,1-difluoro-2-(4'-methoxyphenyl)-3-(triisopropylsilyl)-1,3-butadiene (3d): ¹H NMR (CDCl₃, 300 MHz) δ 7.25 (m, 2H), 6.86 (m, 2H), 6.01 (m 1H), 5.82 (m, 1H), 0.97 (s, 21H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -89.67 (d, ² J_{FF} = 43.7Hz, 1F), -94.48 (d, ² J_{FF} = 43.3Hz, 1F) ppm; ¹³C NMR (CDCl₃, 75Hz) δ 159.05, 152.15 (dd, ¹ J_{CF} = 285.9, ¹ J_{CF} = 285.7Hz), 145.79, 140.64, 134.65 (t, ⁴ J_{CF} = 3.3Hz), 130.28 (t, ³ J_{CF} = 3.4Hz), 125.51 (t, ³ J_{CF} = 3.5Hz), 113.76, 98.83 (dd, ² J_{CF} = 21.4, ² J_{CF} = 21.4Hz), 18.65, 11.53; MS m/z (relative intensity) 157 (100), 309 (31.5, M⁺-43), 352 (27.6, M⁺). Anal. Calcd for C₂₀H₃₀F₂OSi: C, 68.14; H, 8.58. Found: C, 68.24; H, 8.64.

1,1-difluoro-2-(2'-thienyl)-3-(triisopropylsilyl)-1,3-butadiene (3e): ¹H NMR (CDCl₃, 300 MHz) δ 7.26 (m, 2H), 6.99 (m, 1H), 6.05 (d, ${}^2J_{HH}$ = 1.4Hz, 1H), 5.83 (d, ${}^2J_{HH}$ = 2.5Hz, 1H), 1.05 (s, 21H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -87.99 (d, ${}^2J_{FF}$ = 34.8Hz, 1F), -88.51(d, ${}^2J_{FF}$ = 34.9Hz, 1F) ppm; ¹³C NMR (CDCl₃, 75Hz) δ 151.65 (dd, ${}^1J_{CF}$ = 286.7, ${}^1J_{CF}$ = 286.8Hz), 145.79, 140.15, 135.47, 128.31 (t, ${}^3J_{CF}$ = 3.4Hz), 127.26, 126.61(t, ${}^3J_{CF}$ = 5.21Hz), 125.69 (t, ${}^4J_{CF}$ = 2.0Hz), 94.69 (dd, ${}^2J_{CF}$ = 14.2, ${}^2J_{CF}$ = 13.3Hz), 18.65, 11.53; MS m/z (relative intensity) 77(99.2), 133 (100), 285 (46.8, M⁺-43), 328 (2.8, M⁺).

Typical procedure for Palladium catalyst cross-coupling of TIPS- α-bromo difluoroallene with Arylboronic acids: To a solution of α-bromo difluoroallene (0.324g, 1mmol) in 2mL toluene was added Pd₂(dba)₃ (14mg, 2mmol%), triphenylphosphine (10mg, 4mmol%), phenylboronic acid (0.122g, 1mmol) and 2M Na₂CO₃ (1.0mL, 2.0mmol). The resulting mixture was stirred under Argon for about 8h at 100°C. ¹⁹F NMR showed the disappearance of the starting material. Standard work-up gave a red crude product which was purified by flash chromatography.

1,1-difluoro-2-(3'-nitrophenyl)-3-(triisopropylsilyl)-1,3-butadiene (3f): ¹H NMR (CDCl₃, 300MHz) δ 8.20 (s, 18.14H), 8.14 (d, ${}^2J_{HH}$ = 8.1Hz, 1H), 7.71 (d, ${}^2J_{HH}$ = 7.8Hz, 1H), 7.53 (t, ${}^2J_{HH}$ = 8.0Hz, 1H), 6.14 (d, ${}^2J_{HH}$ = 2.6Hz, 1H),), 5.98 (d, ${}^2J_{HH}$ = 2.6Hz, 1H), 0.97 (s, 21H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ - 85.35 (d, ${}^2J_{FF}$ = 34.2Hz, 1F), -90.90 (d, ${}^2J_{FF}$ = 33.8Hz, 1F) ppm; ¹³C NMR (CDCl₃, 75Hz) δ 152.46 (dd, ${}^1J_{CF}$ = 287.6, ${}^1J_{CF}$ = 287.5Hz), 148.34, 139.65, 136.76 (t, ${}^4J_{CF}$ = 2.6Hz), 135.48, 134.82 (t, ${}^3J_{CF}$ = 3.6Hz), 129.40, 123.88 (t, ${}^4J_{CF}$ = 3.3Hz), 122.49, 98.15 (dd, ${}^2J_{CF}$ = 22.0, ${}^2J_{CF}$ = 21.2Hz), 18.58, 11.53; MS m/z (relative intensity) 172 (100), 324 (26.1, M⁺-43), 367 (0.04, M⁺). Anal. Calcd for C₁₉H₂₇F₂NO₂Si: C, 62.10; H, 7.41. Found: C, 62.92; H, 7.57.

1,1-difluoro-2-(4'-fluorophenyl)-3-(triisopropylsilyl)-1,3-butadiene (3h): ¹H NMR (CDCl₃, 300MHz) δ 7.28 (m, 2H), 7.01 (m, 2H), 6.04 (dd, ${}^5J_{HF} = 2.7$ Hz, ${}^5J_{HF} = 1.4$ Hz, 1H), 5.83 (dd, ${}^5J_{HF} = 2.7$ Hz, ${}^5J_{HF} = 2.5$ Hz, 1H), 1.05 (s, 21H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -128.60 (s, 1F), -102.44 (d, ${}^2J_{FF} = 40.1$ Hz, 1F), -107.40 (d, ${}^2J_{FF} = 39.3$ Hz, 1F) ppm; ¹³C NMR (CDCl₃, 75Hz) δ 158.39 (d, ${}^1J_{CF} = 247.1$ Hz), 152.27 (${}^1J_{CF} = 286.3$, ${}^1J_{CF} = 286.3$ Hz), 148.42, 140.46, 135.19 (t, ${}^4J_{CF} = 3.3$ Hz), 130.80 (dd, ${}^3J_{CF} = 3.5$ Hz, ${}^3J_{CF} = 3.5$ Hz), 129.26 (dd, ${}^2J_{CF} = 7.3$, ${}^2J_{CF} = 7.3$ Hz), 115.33 (d, ${}^2J_{CF} = 21.4$ Hz), 98.56 (dd, ${}^2J_{CF} = 13.6$, ${}^2J_{CF} = 13.6$ Hz), 18.58, 11.53;; MS m/z (relative intensity) 145 (100), 297 (12.8, M*-43), 340 (3.1, M*). ¹³C NMR spectrum has been supplied as indication of purity.

1,1-difluoro-2-(4'-bromophenyl)-3-(triisopropylsilyl)-1,3-butadiene (3i): ¹ H NMR (CDCl₃, 300MHz) δ 7.45 (d, ${}^2J_{HH}$ = 8.5Hz, 2H), 7.18 (d, ${}^2J_{HH}$ = 8.3Hz, 2H), 6.04 (dd, ${}^5J_{HF}$ = 2.7Hz, ${}^5J_{HF}$ = 1.4Hz, 1H), 5.86 (dd, ${}^5J_{HF}$ = 2.7Hz, ${}^5J_{HF}$ = 2.5Hz, 1H), 0.97 (s, 21H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -87.51 (d, ${}^2J_{FF}$ = 39.2Hz, 1F), -92.63 (d, ${}^2J_{FF}$ = 39.2Hz, 1F) ppm; ¹³C NMR (CDCl₃, 75Hz) δ 152.20 (${}^1J_{CF}$ = 286.3, ${}^1J_{CF}$ = 286.3Hz), 140.18, 135.56 (t, ${}^4J_{CF}$ = 3.2Hz), 132.36 (dd, ${}^3J_{CF}$ = 3.5Hz, ${}^3J_{CF}$ = 3.5Hz), 131.53 (t, ${}^3J_{CF}$ = 3.8Hz), 130.67 (t, ${}^4J_{CF}$ = 3.4Hz), 121.62, 98.58(dd, ${}^2J_{CF}$ = 23.6, ${}^2J_{CF}$ = 12.9Hz), 18.58, 11.53; MS m/z (relative intensity) 126 (100), 193 (70.1) 357 (0.08, M⁺-43), 400 (0.82, M⁺), 402 (0.82, M⁺+2). ¹³C NMR spectrum has been supplied as indication of purity.

Typical procedure for Palladium catalyst cross-coupling of TIPS- α -bromo difluoroallene with acetylene: To a solution of α -bromo difluoroallene (0.324g, 1mmol) in 2mL THF was added Pd(PPh₃)₂Cl₂

(25mg, 2mmol%), CuI (200mg, 1mmol), triethylamine (0.202g, 2mmol) and acetylene (1.2mmol). The resulting mixture was stirred with refluxing under Argon for about 3h . ¹⁹F NMR showed no change of the starting material. The mixture was warmed up to reflux for another 2hs. ¹⁹F NMR showed the disappearance of the starting material. Standard work-up gave a red crude product which was purified by flash chromatography.

1,1-difluoro-2-(1-triisopropylsilylethylidene)-4-phenyl-but-1-ene-3-yne (4a): ¹H NMR (CDCl₃, 300 MHz) δ 7.42 (m, 2H), 7.27 (m, 3H), 6.04 (dd, ${}^{5}J_{HF} = 2.7$ Hz, ${}^{5}J_{HF} = 1.4$ Hz, 1H), 5.83 (dd, ${}^{5}J_{HF} = 2.7$ Hz, ${}^{5}J_{HF} = 2.5$ Hz, 1H), 1.35 (m, 3H), 1.05 (s, 18H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -80.36 (d, ${}^{2}J_{FF} = 9.1$ Hz, 1F), -83.83 (d, ${}^{2}J_{FF} = 9.4$ Hz, 1F) ppm; ¹³C NMR (CDCl₃, 75Hz) δ 158.12 (dd, ${}^{1}J_{CF} = 299.2$, ${}^{1}J_{CF} = 295.8$ Hz), 137.66 (t, ${}^{4}J_{CF} = 2.1$ Hz), 134.42 (t, ${}^{4}J_{CF} = 3.1$ Hz), 131.41, 128.52, 123.34, 94.17 (t, ${}^{3}J_{CF} = 5.7$ Hz), 85.43 (t, ${}^{2}J_{CF} = 16.1$ Hz), 81.835 (t, ${}^{3}J_{CF} = 4.6$ Hz), 66.08, 18.84, 11.46; MS m/z (relative intensity) 151 (100), 303 (35.4, M*-43), 346 (3.1, M*). ¹³C NMR spectrum has been supplied as indication of purity.

1,1-difluoro-2-(1-triisopropylsilylethylidene)-4-(trimethylsilyl)-but-1-ene-3-yne (4b): ¹ H NMR (CDCl₃, 300 MHz) δ 5.96 (dd, ⁵ J_{HF} = 2.5Hz, ⁵ J_{HF} = 1.3Hz, 1H), 5.69 (dd, ⁵ J_{HF} = 1.7Hz, ⁵ J_{HF} = 2.2Hz, 1H), 1.27 (m, 3H), 1.12 (s, 18H), 0.18 (s, 9H) ppm; ¹⁹F NMR (CDCl₃, 282MHz) δ -79.61 (d, ² J_{FF} = 9.9Hz, 1F), -83.51 (d, ² J_{FF} = 8.7Hz, 1F) ppm; ¹³C NMR (CDCl₃, 75Hz) δ 158.98 (dd, ¹ J_{CF} = 294.4, ¹ J_{CF} = 295.9Hz), 137.51 (t, ⁴ J_{CF} = 2.5Hz), 134.26 (t, ⁴ J_{CF} = 3.5Hz), 100.20 (t, ³ J_{CF} = 4.6Hz), 96.90, 88.25, 85.60 (dd, ² J_{CF} = 24.5, ² J_{CF} = 21.2Hz), 85.18, 32.19, 29.93, 22.95, 18.75, 14.35, 11.68, 0.23; MS m/z (relative intensity) 121 (100), 299 (3.9, M⁺-43), 342 (0.1, M⁺). ¹³C NMR spectrum has been supplied as indication of purity.

1,1-difluoro-2-(1-triisopropylsilylethylidene)-oct-1-ene-3-yne (4c): 1 H NMR (CDCl₃, 300 MHz) δ 5.93 (dd, $^{5}J_{HF} = 2.5$ Hz, $^{5}J_{HF} = 1.3$ Hz, 1H), 5.64 (dd, $^{5}J_{HF} = 2.4$ Hz, $^{5}J_{HF} = 1.7$ Hz, 1H), 2.30 (t, $^{2}J_{HH} = 1.2$ Hz, 2H), 1.44 (m, 4H), 1.27 (m, 3H), 1.10 (s, 18H), 0.90 (t, $^{2}J_{HH} = 7.3$ Hz, 3H) ppm; 19 F NMR (CDCl₃, 282MHz) δ -83.26 (d, $^{2}J_{FF} = 17.5$ Hz, 1F), -86.24 (d, $^{2}J_{FF} = 17.8$ Hz, 1F) ppm; 13 C NMR (CDCl₃, 75Hz) δ 158.25 (dd, $^{1}J_{CF} = 293.3$, $^{1}J_{CF} = 293.3$ Hz), 138.24 (t, $^{4}J_{CF} = 2.2$ Hz), 133.70 (t, $^{4}J_{CF} = 3.5$ Hz), 95.52 (t, $^{3}J_{CF} = 5.9$ Hz), 85.53 (dd, $^{2}J_{CF} = 16.6$, $^{2}J_{CF} = 16.3$ Hz), 72.70, 32.17, 29.90, 22.19, 18.75, 3.79, 11.69; MS m/z (relative intensity) 115 (100), 199 (62.1), 241 (19.5), 283 (4.5, M⁺-43), 326 (0.1, M⁺). 13 C NMR spectrum has been supplied as indication of purity.